On Vanishing Coefficients of Algebraic Power Series over Fields of Positive Characteristic

نویسندگان

  • Boris Adamczewski
  • Jason P. Bell
چکیده

— Let K be a field of characteristic p > 0 and let f(t1, . . . , td) be a power series in d variables with coefficients in K that is algebraic over the field of multivariate rational functions K(t1, . . . , td). We prove a generalization of both Derksen’s recent analogue of the Skolem–Mahler–Lech theorem in positive characteristic and a classical theorem of Christol, by showing that the set of indices (n1, . . . , nd) ∈ N d for which the coefficient of t1 1 · · · t nd d in f(t1, . . . , td) is zero is a p-automatic set. Applying this result to multivariate rational functions leads to interesting effective results concerning some Diophantine equations related to S-unit equations and more generally to the Mordell–Lang Theorem over fields of positive characteristic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC

Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...

متن کامل

ALGEBRAIC INDEPENDENCE OF CERTAIN FORMAL POWER SERIES (I)

We give a proof of the generalisation of Mendes-France and Van der Poorten's recent result over an arbitrary field of positive characteristic and then by extending a result of Carlitz, we shall introduce a class of algebraically independent series.

متن کامل

The Algebraic Closure of the Power Series Field in Positive Characteristic

For K an algebraically closed field, let K((t)) denote the quotient field of the power series ring over K. The “Newton-Puiseux theorem” states that if K has characteristic 0, the algebraic closure of K((t)) is the union of the fields K((t1/n)) over n ∈ N. We answer a question of Abhyankar by constructing an algebraic closure of K((t)) for any field K of positive characteristic explicitly in ter...

متن کامل

ALGEBRAIC INDEPENENCE OF CERTAIN FORMAL POWER SERIES (II)

We shall extend the results of [5] and prove that if f = Z o a x ? Z [[X]] is algebraic over Q (x), where a = 1, ƒ 1 and if ? , ? ,..., ? are p-adic integers, then 1 ? , ? ,..., ? are linkarly independent over Q if and only if (1+x) ,(1+x) ,…,(1+x) are algebraically independent over Q (x) if and only if f , f ,.., f are algebraically independent over Q (x)

متن کامل

Formal Power Series Solutions of Algebraic Ordinary Differential Equations

In this paper, we consider nonlinear algebraic ordinary differential equations (AODEs) and study their formal power series solutions. Our method is inherited from Lemma 2.2 in [J. Denef and L. Lipshitz, Power series solutions of algebraic differential equations, Mathematische Annalen, 267(1984), 213-238] for expressing high order derivatives of a differential polynomial via their lower order on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012